

TREECHOP: A TREE-BASED QUERY-ABLE COMPRESSOR FOR XML

Gregory Leighton, Tomasz Müldner, James Diamond

{005985L, tomasz.muldner, james.diamond}@acadiau.ca

Jodrey School of Computer Science, Acadia University, Wolfville, Nova Scotia, Canada

ABSTRACT

XML is a popular meta-language that facilitates the

interchange and access of data. However, XML's verbose

nature may increase the size of a data set as much as ten-fold.

In this paper, we present a novel technique for lossless XML

compression, called TREECHOP, which supports querying of

compressed XML data without requiring full decompression.

Unlike other query-capable XML compression schemes,

TREECHOP requires only a single pass over the input

document during the compression process, resulting in an

efficient, online operation that is well-suited for transmission

of compressed XML documents over a network.

1 INTRODUCTION

The eXtensible Markup Language (XML) [1] is a World Wide

Web Consortium (W3C) endorsed standard for semi-structured

data. It allows data to be surrounded by textual markup

(elements and attributes) that serves to describe its semantics.

The inclusion of structural information with the data grants

XML great flexibility, at the cost of increased verbosity. It is

not uncommon for the XML representation of a set of data to

be as much as ten times as large as alternative representations

(e.g. data in comma-separated value format).

In recent years, messaging has been one of the most common

applications of XML. One example is the Web Services

initiative, in which network services can be discovered,

described, and invoked in a platform- and implementation-

independent way via the exchange of XML messages. Such

applications would benefit from a compression scheme which

operates online and allows queries to be carried out directly on

compressed data. In this paper, we present TREECHOP, an

XML-conscious compression scheme which achieves both of

these objectives.

1.1 Related Work
XMill [2] represents the pioneering work in the area of XML-

conscious compression. Its compression strategy separates the

structural information of an XML document from the

contained data. Data values are then grouped in containers

according to the identity of the enclosing element or attribute,

and gzip [3] is subsequently applied to each individual

This work has been partially supported by

NSERC grants 41-0-235041 and

41-0-235201

container. A container expression language allows the user to

substitute alternative compression strategies for gzip.

Although XMill often outperforms gzip on XML data, the

original structure of the document is disrupted during the

compression process, which precludes online processing. This

serves to limit the usefulness of XMill for XML messaging

applications. In addition, the XMill encoding format does not

allow querying of compressed data.

XMLPPM [4] achieves a higher degree of compression via

the use of multiplexed hierarchical models and the PPM [5]

text compression method. As with XMill, compressed data

cannot be queried.

XGRIND [6] was the first XML-conscious compression

scheme to support querying without full decompression.

Element and attribute names are encoded using a byte-based

scheme, and character data is compressed using non-adaptive

Huffman coding [7]. Use of the latter technique significantly

slows down the compression process, since two passes over the

original document are required (first to gather probability data,

and a second time to perform the encoding).

XPRESS [8] also supports querying of compressed data and

claims to achieve better compression than XGRIND.

However, it uses a semi-adaptive form of arithmetic coding

which also necessitates two passes over the original XML

document.

1.2 Contributions
This paper presents linear time algorithms for compressing,

decompressing, and querying XML data. Unlike the query-

able XML compression schemes described in [6] and [8],

compression requires only a single pass through the input

XML document.

1.3 Organization
Section 2 of this paper describes the compression,

decompression, and querying strategies used in TREECHOP.

Experimental results comparing the compression and speed of

TREECHOP versus alternative compression routines are

presented in Section 3. Section 4 concludes the paper.

2 TREECHOP

In this section, we define some notational conventions used in

the subsequent discussions on the compression,

decompression, and querying strategies employed in

TREECHOP. We begin by describing the XML document tree.

<?xml version=”1.0” encoding=”UTF-8”?>
 <!-- start of PO -->
 no=”1456”>
 < >06/05/05</ >
 < >765345</ >
 < >
 < >
 < >P-4534</ >
 < >2</ >
 </ >
 < >
 < >P-9182</ >
 < >1</ >
 </ >
 </ >
 </ >
 <!-- end of PO -->

<PurchaseOrder
Date Date
CustomerID CustomerID
Order

Item
ProductNo ProductNo
Quantity Quantity

Item
Item

ProductNo ProductNo
Quantity Quantity

Item
Order

PurchaseOrder

Fig. 1. Example XML document

The root node of the document tree corresponds to the root

element in the XML document. Any information appearing

before the root element (such as the XML declaration,

DOCTYPE declaration, processing instructions, or comments)

is stored in a data container called the prologue. Similarly, any

comments or processing instructions occurring after the end tag

of the root element are stored in a data container called the

epilogue.

Character data (such as attribute values and text occurring

between an XML element's beginning and ending tags) are leaf

nodes in the tree. All other data types appear as non-leaf

nodes. There are five non-leaf node types, described below.

• attribute node: this subtype corresponds to the

occurrence of an attribute node within the source

XML document. Each attribute has a single child, a

leaf node containing the attribute's data value.

• CDATA node: represents a CDATA section within

the source XML document. The contents of the

CDATA section are contained in the label for the

node.

• comment node: corresponds to a comment occurring

between the start and end tags of the XML

document’s root element. The text between the

delimiting <!-- and --> comment markers is stored in

the node’s label.

• element node: represents an occurrence of an XML

element within the document. Each element node

may have multiple children, including nodes

representing nested elements, attributes, comments,

or processing instructions. Non-empty element nodes

have a leaf node child containing the character data

enclosed by the element's start and end tag. The root

node in the document tree is always an instance of

this type.

• processing instruction node: each occurrence of this

subtype corresponds to the appearance of a

processing instruction in the source XML document.

Any text between the delimiting <? and ?> markers

forms the node’s label.

Fig. 2. Tree Representation of the XML Document in Fig. 1

Fig. 1 depicts an XML document and Fig. 2 shows the

equivalent document tree representation.

Definition 1: Each node in the XML document tree possesses

a textual label. In the case of XML elements, the label is the

name of the element; for XML attributes, the label is formed by

concatenating ‘@’ with the name of the attribute. In the case

of comments, processing instructions, and CDATA sections,

the label consists of all text between the delimiting section

markers.

As an example, the root element of the document tree in Fig. 2

has the label PurchaseOrder, while the no attribute associated

with the PurchaseOrder element is assigned the label @no.

Definition 2: The path of a non-leaf node vn in the XML

document tree is a sequence /L1/L2/…/Ln of one or more ‘/’-

separated labels that traces a route from the root node v1 to vn,

where Li is the label of node vi.

In the document tree depicted in Fig. 2, each of the nodes

labeled Quantity is assigned the same path

/PurchaseOrder/Order/Item/Quantity, while the node labeled

@no has the path /PurchaseOrder/@no.

2.1 Compression Strategy
The compression process in TREECHOP begins by conducting

a SAX-based [9] parsing of the XML document. As tokens are

returned by the parser, new tree nodes are created and then

written out to the compression stream in depth-first order. This

approach avoids building an in-memory representation of the

entire document tree.

Each non-leaf node is assigned a binary codeword. This

codeword is uniquely assigned based on the path of the tree

node. If there are multiple nodes with the same absolute path,

each occurrence will receive the same codeword. For example,

in the tree shown in Fig. 2, each of the two instances of

/PurchaseOrder/Order/Item will be assigned the same

codeword.

The codeword C(v) assigned to a non-leaf node v with parent

node p is formed by the concatenation of three codes C(p),

G(v), and T(v), where

Node Type T(v)

Element 000

Attribute 001

Comment 010

CDATA 011

Processing

Instruction

100

Table 1. Values for T(v) by node type

• C(p) represents the codeword assigned to p

• G(v) is a Golomb code [10] assigned to v based on its

ordering relative to p. If v is the n-th distinct child node

of p (where two nodes are said to be distinct if they

have different paths), then we form G(v) by

concatenating the unary code for q + 1 with the binary

code for r, where

 3/)1(−= nq (1)

13 −−= qnr (2)

The constant three in (1) and (2) is a parameter of

Golomb coding; the reasons for this particular choice

can be found in [11].
• T(v) is a sequence of 3 bits used to indicate the node

type. Table 1 lists the T(v) values for each node type.

The codeword of the root consists of 00000. An example of

the codeword assignment scheme is provided in Table 2,

pertaining to the document tree depicted in Fig. 2.

This encoding scheme has three important properties: (1) the

codeword for each node is prefixed by its parent's codeword;

(2) two nodes share the same codeword if and only if they have

the same path; and (3) the structure of the original XML

document is maintained by the encoding scheme.

The encoding information for each tree node is written to the

encoding stream in an adaptive fashion. Each non-leaf node is

encoded as a 3-tuple (L, C, D), where L is a byte indicating the

bit length of the codeword; C is the codeword assigned to the

node, consisting of a sequence of L / 8 bytes; and D is the

textual data stored in the node. A reserved byte value is used

to indicate to the decoder that raw character data is

forthcoming in the encoding stream; once D has been

transmitted, a second reserved byte value is used to signal the

end of the character data sequence.

Leaf nodes are transmitted in the same manner as D,

described above. For the second and subsequent occurrences

of a particular codeword, only the 2-tuple (L, C) is transmitted

since the decompressor is able to infer the value of D at that

point.

Information about a node N is written to the encoding stream

immediately after N is assigned a codeword. This allows the

decoder to set about decoding N before encoding of other

nodes has been received. As node information is added to the

compression stream, it is compressed using gzip.

2.2 Decompression Strategy
Since tree node encodings are written to the compression

stream in depth-first order, it is possible for the decompressor

to regenerate the original XML document incrementally. A

code table is used to store (L, C) � D mappings for

Node Path C(v)
/PurchaseOrder 00000

/PurchaseOrder/@no 0000000001

/PurchaseOrder/Date 00000010000

/PurchaseOrder/CustomerID 00000011000

/PurchaseOrder/Order 00000100000

/PurchaseOrder/Order/Item 0000010000000000

/PurchaseOrder/Order/Item/ProductNo 000001000000000000000

/PurchaseOrder/Order/Item/Quantity 0000010000000000010000

Table 2. Assigned codewords for the document tree in

Fig. 2

previously-encountered tree nodes. In addition, a stack is

employed to maintain proper nesting of elements during the

decompression process.

As each non-leaf tree node is encountered in the

compression stream, the decompressor determines the node

type by examining the final three bits in the codeword. The

type information is then used to surround the D value for this

node with the appropriate XML syntax before emitting it to the

decompression stream.

2.3 Querying Strategy
Exact-match queries can be carried out via a single scan

through the compression stream. The query processor employs

a stack to keep track of the current path; when the query

predicate path is first encountered, the associated codeword C

is recorded and the next occurring D value is extracted from

the compression stream as a query match. Subsequently, the

remainder of the stream is scanned for future occurrences of C.

With each match, the associated D value is extracted from the

stream.

Range queries are handled in a similar manner, except that

each query match additionally requires that the corresponding

D value be converted into a numeric value and tested to see if it

falls within the query range before it is returned as a search

result.

3 EXPERIMENTAL RESULTS

This section presents the results of two sets of experiments that

were carried out to evaluate the effectiveness of TREECHOP

in compressing and transmitting XML data over a TCP/IP

network.

3.1 Compression Rates
Fig. 3 illustrates the compression rates achieved by

TREECHOP, gzip, and XGRIND on four XML files. Columns

A, B, C, and D respectively indicate performance on a file

containing player statistics from the 1998 Major League

Baseball season, Shakespeare’s play Macbeth, a highly-

structured document containing 150 employee records, and a

similar document with 100000 employee records. Table 3

describes the structural characteristics of each test file,

including the original document size, the number of elements

and attributes, and the total number of characters in the data

sections. The results indicate that XGRIND performs

significantly worse than either gzip or TREECHOP on each

file, while TREECHOP slightly outperforms gzip in all cases.

0
0.5

1
1.5

2
2.5

3
3.5

4
C

o
m

p
re

s
s
io

n

R
a

te
 (

b
p

c
)

A B C D

Document

TREECHOP

gzip

XGRIND

Fig. 3. Compression performance of TREECHOP, gzip,

and XGRIND (measured in bits-per-character).

File Size(KB) Elements Attributes Data

baseball 788 27080 0 230970

macbeth 175 3975 0 97625

150emp 26 901 150 8277

100000emp 16831 600001 100000 5534311

Table 3. Characteristics of XML documents used in the

compression experiment.

3.2 Compression/Decompression Speed

To evaluate the speed of TREECHOP’s compression and

decompression strategies, an experiment was carried out in

which a set of documents ranging in size from 2 KB to 1 MB

were compressed, transmitted over a TCP socket connection to

a remote server located 20km (12 miles) from the client, and

decompressed on the server side to reproduce the original

document. Each document consisted of a set of employee

records, similar to test cases C and D in Section 3.1. The

performance of TREECHOP was compared with gzip and with

uncompressed transmission of each document. Results for

XGRIND were not included since the current implementation

does not support online transmission of compressed data

between networked systems.

The results of this experiment are depicted in Fig. 4. Not

surprisingly, both gzip and TREECHOP experience a widening

performance advantage over raw XML data transmission as the

document size increases. In addition, gzip performs slightly

faster than TREECHOP on the larger documents in the test set

(due to the additional computational expense of calculating and

decoding the codeword for each tree node).

When interpreting the results, it is worth noting that as the

physical distance between the client and server systems is

increased, the slight speed advantage of gzip during the

compression and decompression phases may eventually be

eclipsed by the sheer expense of sending data across the

network (if the network approaches its saturation point). When

this is the case, TREECHOP’s ability to compress data at a

better rate than gzip will allow it to achieve superior

transmission rates. Additionally, in cases where the receiving

0

5000

10000
15000

20000

25000

2 200 400 600 800 1000

Document Size (KB)

T
ra

n
s
m

is
s
io

n
 T

im
e

(m
s

e
c

)

Raw XML TREECHOP

GZIP

Fig. 4. Transmission speed of TREECHOP, gzip, and raw

XML data over a TCP/IP network.

server program is only interested in a subset of the document

content (e.g. the name of each employee), it would be more

efficient to perform a search on TREECHOP-compressed data

in lieu of carrying out a full decompression of the document.

4 CONCLUSIONS

An extended version of this paper is available in [11].

REFERENCES

[1] Extensible Markup Language (XML) 1.0 (3rd ed.).

http://www.w3.org/TR/REC-xml.

[2] H. Liefke and D. Suciu, “XMill: an efficient compressor

for XML data,” in 2000 Proc. ACM SIGMOD Int’l Conf.

on Management of Data, pp. 153-64.

[3] gzip, http://www.gzip.org.

[4] J. Cheney, “Compressing XML with multiplexed

hierarchical PPM models,” in 2001 Proc. IEEE Data

Compression Conference, pp. 163-72.

[5] J.G. Cleary and I.H. Witten, “Data compression using

adaptive coding and partial string matching,” IEEE Trans.

Comm., vol. 32, no. 4, pp. 396-402, Apr. 1984.

[6] P.M. Tolani and J.R. Haritsa, “XGRIND: a query-friendly

XML compressor,” in Proc. 2002 Int’l Conf. on Database

Eng., pp. 225-34.

[7] D. Huffman, “A method for the construction of minimum

redundancy codes,” in Proc. of the IRE., vol. 40, no. 9,

pp. 1098-1101.

[8] J-K. Min, M-J. Park and C-W. Chung, “XPRESS: a

queriable compression for XML data,” in Proc. 2003

ACM SIGMOD Int’l Conf. on Management of Data, pp.

122-33.

[9] Simple API for XML (SAX), http://www.saxproject.org.

[10] S.W. Golomb, “Run-length encodings,” IEEE Trans. on

Info. Theory IT-12(3), pp. 399-401, July 1966.

[11] G. Leighton, T. Müldner, J. Diamond. “TREECHOP: A

tree-based query-able compressor for XML (extended

version)”, http://cs.acadiau.ca/technicalReports/.

