

PERSISTENT STORAGE AND QUERYING OF
COMPRESSED XML DOCUMENTS ON THE WEB

Brian Demmings, Tomasz Müldner, Gregory Leighton, Obidul Islam, Andrew Young
Jodrey School of Computer Science, Acadia University,

Wolfville, NS, Canada B4P 2R6

ABSTRACT

We describe the design and implementation of a Web-based distributed system called TREESTORE, intended for storing
compressed XML documents in a relational database. The use of a database is fully portable, requiring minimal changes
to application code to substitute one database management system for another. In TREESTORE, compressed XML
documents are shredded into a fixed number of relational tables. Besides the storage capability, TREESTORE provides
online querying of compressed XML documents without requiring full decompression. Therefore, it is a useful
component of any Web application as it combines space-efficient, database-portable access to persistent storage with
online querying.

KEYWORDS

XML, compression, WWW, relational databases, XML-enabled databases

1. INTRODUCTION

The Extensible Markup Language (XML) [14] is a popular meta-language that facilitates the interchange and
access of data. There are two classes of database management systems (DBMSs) that can store XML
documents: native XML DBMSs [15], which are designed specifically for management of XML documents;
and XML-enabled DBMSs [30], which provide an interface on top of relational database engines to handle
conversions between XML and relational schemas. Both types of databases have their problems. Unlike
relational databases, which have matured and provide efficient storage techniques, native XML databases
represent a relatively new research area, and hence are not yet fully optimized. XML-enabled databases are
non-standard, in the sense that each database vendor has defined different and incompatible interfaces for
storing and querying XML, and changes to application code are likely to be required if the DBMS is
changed. Semi-structured data formats such as XML are not easily mapped to relations for traditional
relational databases, due partially to the hierarchical nature of semi-structured data versus the “flat” format of
relational data. Several approaches for mapping between XML and relational formats have been proposed by
the academic community. These strategies typically provide a facility for converting queries expressed using
XPath or XQuery into equivalent SQL queries over the stored data. We survey such approaches in Section 2.
To address many of these concerns, some vendors of relational DBMS products are beginning to move to a
hybrid model, in which XML is treated as a native data type alongside the various data types defined by the
SQL standard; see [8].

In this paper, we present the design and implementation of a data management framework called
TREESTORE, that can be used to store schema-less XML documents in an arbitrary relational database
using a compressed format. Our primary focus is on supporting efficient querying operations which do not
require a compressed XML document to be fully decompressed beforehand. We envision that
TREESTORE will prove especially useful for mobile applications where client-side storage is limited. Since
the user will often wish only to extract a very small portion from the overall data set, the ability to extract the
desired subset directly from the compressed domain tends to result in a substantial performance benefit,
especially in cases where the data is highly-structured and therefore subject to higher compression rates.
This paper is organized as follows. Section 2 presents related work and our contributions, and Section 3
briefly describes the functionality and implementation of TREESTORE. Section 4 describes experimental
results, and Section 5 concludes the paper and outlines future work.

2. RELATED WORK AND CONTRIBUTIONS

In this section, we describe previous work related to storing XML data in databases and compressing XML
data. We close the section by presenting our contributions.

2.1 Storing XML in Databases

Native XML databases (hereafter referred to as NXDs) [11, 16, 22] are databases specifically
designed to provide storage and manipulation of XML documents. Typically, XPath [34] and/or XQuery
[36] are used for accessing documents; due to the current absence of a standardized XML update language,
an implementation-specific language (e.g. XUpdate [38]) is used for updating documents in the database.
Most NXDs support validation of documents against an associated document type definition (DTD) or
schema, but some support storage of schema-less XML documents as well.

Storage of XML documents in relational databases requires them to be shredded (decomposed) and
then mapped to tables. (Another less popular technique, storing an XML document as a single character large
object value, frequently requires less storage space, yet is inefficient with respect to querying). There has
been significant research on these techniques, which can be classified into several categories. Schema-based
approaches assume that XML documents are valid according to a DTD or XML Schema [35]. For example,
methods using this technique have been described by Shanmugasundaram et al [27]. This is an early paper
that presents a prototype system which converts XML documents to relational tuples, translates semi-
structured queries over XML documents to SQL queries over tables, and converts the results to XML. Tian et
al [31] compare various strategies for storing DTD-based XML data to facilitate efficient query processing,
including text files, RDBMS, and Object Manager. Amer-Yahia et al [2] describe mapping strategies to shred
and load the XML Schema-based data into relational tables, and to translate XML queries over the original
data into equivalent SQL queries over the mapped tables. LegoDB [4] is, an XML storage mapping system
that automatically finds an efficient relational configuration for a target XML application.

The second category of approaches is schema-oblivious, meaning there is no requirement for XML
documents to be valid according to a schema; examples of this strategy are outlined in [13] and [25]. There
are also hybrid approaches, which may or may not employ a schema (e.g. STORED [10]). Recent versions of
all commercial databases provide XML-to-relational data interfaces, which typically implement one of the
techniques described above; (e.g. DB2 XML Extender [7] and Oracle XML DB [23]). However, these
approaches have serious limitations in terms of capability and performance. Such XML-to-relational
interfaces are not standardized, and therefore switching from one relational database to another may require
major modifications of the application code, introducing an undesirable “tight coupling” between the
application and data layers. In addition, the number of tables required by the database to store XML
documents may grow as various XML documents are inserted.

2.2 XML Compression

In this section, we briefly review research on XML compression; for more details, see [17,21]. XML
compressors can be categorized as follows:

• Is the compressor XML-aware (i.e. can it take advantage of understanding the underlying structure
of XML documents during the compression process)?

• Is the compressor single pass (i.e. does it require only a single pass for compression and
decompression)?

• Is the compressor online or offline? (An online compressor does not require the full compressed
document to begin the decompression process)

• Is the compressor query-able (i.e. is it possible to query the document without full decompression)?
XML-aware compressors are superior for compressing XML documents over standard compressors

such as gzip [14]. Here, we describe only a few XML-aware compressors that satisfy some of the above
conditions. XMill [18] represents the pioneering work in the area of XML-conscious compression, but it is an
offline non-query-able compressor. XMLPPM [5] is an online non-query-able compressor, but it achieves the
highest degree of compression. XGRIND [32] and XPRESS [19] were the first query-able compressors, but
neither is a single-pass compressor. XQueC [37] provides a compressed storage for XML data that can be
tailored to a specified query workload, offering querying support for a subset of the XQuery [36] standard

over compressed data. However, the scheme used in XQueC relies on custom structures for storage and
indexing, an approach which is not readily applicable to efficient streaming of XML documents over a
network. Finally, TREECHOP [17], the compressor used in our proposal, is an online, single-pass, query-
able compressor (described in further detail in Section 3.1.)

2.3 Contributions

To our knowledge, there have been no previous attempts to provide the solution proposed in this paper: a
Web-based framework enabling the storage and querying of compressed XML data. Specifically, this paper
describes the design and implementation of a distributed XML data management framework called
TREESTORE, which can be used to store schema-less XML documents in a relational database over the
WWW. TREESTORE is fully portable, meaning it can be interfaced with an arbitrary relational database
supporting JDBC, and XML documents are stored in a relational database in a compressed form, using only
four tables. TREESTORE is a distributed application that supports desktop clients storing and retrieving
XML documents, and querying these documents. In addition, less powerful, thin mobile clients can query
XML documents (in this case, the processing is done on the server side).

The TREESTORE client compression process and the TREESTORE server operate in an online
fashion; the server does not have to wait until the entire compressed document has been received before it
begins processing. XML data stored in the database can be subsequently queried without having to fully
decompress it. Querying can span over multiple documents. Therefore, TREESTORE combines space-
efficient persistent storage with efficient querying. Finally, TREESTORE additionally supports efficient
conversion of TREESTORE managed documents into TREECHOP-compressed documents as the document
is being retrieved from the database (without fully reconstructing the XML), so that the output can be piped
into another application, or the compressed document can be stored by the client.

Comparing TREESTORE and DB2 with XML Extender [7] has shown that TREESTORE’s
performance, while worse than DB2 on insert cases, is comparable to DB2, or even faster in retrieval
applications. This makes it a good candidate for use in Web applications or in a networked environment
requiring storage of XML documents.

3. TREESTORE

We begin this section by briefly summarizing the operation of TREECHOP, the compression scheme used in
TREESTORE. This is followed by a description of the functionality and a brief description of the Java-based
implementation.

3.1 TREECHOP

TREECHOP is a lossless XML-aware compressor which supports querying over compressed data. The
compression process begins by conducting a SAX-based [28] parsing of the XML document. To avoid
building an in-memory representation of the entire document tree, tokens returned by the parser are re-
interpreted as tree nodes and then written out to the compression stream in depth-first order. As node
information is added to the compression stream, it is compressed using gzip. Each non-leaf node v is assigned
a binary codeword. This codeword succinctly identifies a node’s location within the document tree along the
parent-child and sibling axes, and additionally indicates the node type (e.g. element, attribute, or #PCDATA).
To allow the decoder to set about decoding the node without waiting for the entire codeword, information
about the node is written to the encoding stream immediately after being assigned a codeword. Each non-leaf
node is transmitted as a 3-tuple (L, C, D), where L is a byte indicating the bit length of the codeword; C is the
codeword assigned to the node, consisting of a sequence of L / 8 bytes; and D is textual data stored in the
node. A reserved byte value is used to indicate to the decoder that raw character data is forthcoming in the
encoding stream; once D has been transmitted, a second reserved byte value is used to signal the end of the
character data sequence. For the second and subsequent occurrences of a particular codeword, only the 2-
tuple (L, C) is transmitted, as the decompressor is able to infer the value of D at that point. Leaf nodes are
transmitted in the same manner as D, described above.

Since tree node encodings are written to the compression stream in depth-first order, it is possible
for the decompressor to regenerate the original XML document incrementally. A code table stores (L, C) →
D mappings for previously-encountered tree nodes. In addition, a stack is employed to maintain proper
nesting of elements during the decompression process. A more detailed description of the TREECHOP
compression and decompression routines is provided in [17].

3.2 TREESTORE Functionality

TREESTORE provides desktop clients with storage, retrieval, and querying operations on XML documents,
and it also provides thin, mobile clients with querying operations. Fig. 1 shows the overview of
TREESTORE components. In this figure, TS stands for a TREESTORE stream and TC stands for a
TREECHOP-compressed stream. The main difference between these streams is that while the TS stream
contains gzip’ed data and other non-compressed items (such as codewords), the TC stream is a single,
gzip’ed stream. Details of each of these operations are discussed below.

Fig. 1. High-Level Overview of TREESTORE.

3.2.1 Storage and Transmission of XML Documents

To store an XML document, the client component reads this document, shreds it using the technique
developed for TREECHOP, then compresses its data (using gzip) and sends the resulting stream to the server
component, which stores the shredded document in a relational database. This process offloads the
compression process from the server to the client, thereby improving the scalability of the TREESTORE
server.

On the receiving end, the TREESTORE server reads chunks (without decompressing), forms
appropriate INSERT SQL statements and invokes these INSERT statements to store the received data in a
relational database. Using JDBC, TREESTORE can connect to any relational database that supports SQL and
has a JDBC driver, and so the underlying database can be changed without requiring the modification of
application code outside the TREESTORE layer.

Finally, note that since mobile device clients have limited memory and processing capabilities, they
are not able to store XML in TREESTORE.

3.2.2 Retrieval of XML Documents

To retrieve an XML document, the client component sends a request to the server component, which
composes the TS stream (i.e. the shredded and compressed document) from the relational database and sends

it back to the client, which applies the decompression routine to restore the original XML document. As an
alternative to the last step, the client component may instead convert the TS stream to a TREECHOP-
compressed stream and “pipe” the resulting stream into another application, which can read this stream, or
the stream may be decompressed and then piped.

3.2.3 Querying of Compressed XML Documents

By using the XML Query Processor component (see Fig. 1), a remote client can query an XML document
stored in a database, without first completely downloading and decompressing the document. The current
implementation of TREESTORE supports querying using absolute and relative XPath expressions XPath
expressions, which may contain wildcards and predicates. These queries can be divided into simple and
conditional query classes; simple queries may or may not contain wildcards, but must not contain predicate
conditions; conditional queries support the notation supplied by simple queries, and additionally include
predicates; see Table 1.

Table 1. Simple and Conditional Queries.

Simple Conditional
1 /employees/employee/fname /employees/employee[fname=’Bob’]/fname
2 //employee //employee[@id=’1234’]
3 //employee/lname //employee[fname=’Charles’]/lname
4 /employees/employee/* /employees/employee[fname=’Randy’]/*

When a query match is made, the textual-content of the matched node is returned. For instance, if the query 3
from Table 1 is made, all last-names for employee’s with the first name ‘Charles’ are returned.

3.2.4 TREESTORE-to-TREECHOP and Back Again

The close relationship between TREESTORE and TREECHOP allows for efficient conversion of
TREESTORE-stored XML into streaming, query-able TREECHOP-compressed XML. The XML document
decomposition of TREESTORE relies on the compression and decompression strategies developed for the
TREECHOP compressor and decompressor [21].

When reading a TREECHOP-compressed stream, TREESTORE reuses the code-words and data from the
TREECHOP stream. Important context information for each node, including first-child, following-sibling,
data, code-word, and path are maintained by using a context-stack. The resulting information is stored in
TREESTORE format in the relational database.

Using the first-child, following-sibling relationships, and codewords and data of stored nodes,
TREESTORE can efficiently emit a TREECHOP-compressed XML document.

3.3 TREESTORE Architecture

In this section we discuss the architecture of TREESTORE, shown in Fig 1. The main components of
TREESTORE are:
• TS2TC Client Reader, which inputs the TS stream, and outputs a TC stream;
• TS2Doc Client Reader, which inputs the TS stream and outputs the raw XML;
• Doc2TS Client Writer, which inputs a raw XML document and outputs the TS stream;
• Desktop XML Query Processor, which inputs the XPath Query and sends the request to the server; upon

receiving the data, it forms the query result using a registered listener object, which carries out a defined
sequence of operations on each node encoding as it is received from the server;

• Mobile XML Query Processor, which preprocesses the XPath Query, sends it for complete processing to
the server’s Mobile XML Query Processor, and receives the decompressed query results from the server;

• DB2TS Server Reader, which reads the compressed document from the database and outputs the TS
stream; and

• TS2DB Server Writer, which reads the TS stream and writes the compressed document to the database.
The database schema used by TREESTORE is shown in Fig. 3.

Node_table(ID, docID, fChild, fSibling, codeword, data)
Metadata_table(xmlIdentifier, docID, encoding, prologue, epilogue)
Code_table(path, codeword, codeLength, docID)

Freenodes_table(startNodeID, finishNodeID)
Fig. 2. Relational Schema used in TREESTORE.

TREESTORE stores documents by associating a unique name (provided by the client) with each stored
document. The unique name becomes the xmlIdentifier to which the server assigns an internal unique integer
document identifier (docID) to each document, to permit timely lookup of nodes associated with a particular
document. The server does not permit the client to overwrite existing documents with the same xmlIdentifer.
The node table stores the tree structure of all documents, using a first-child, following-sibling format [1]
along with the data and codeword for each node. Each XML node encountered during the depth-first
traversal of the XML document is assigned a unique node ID, which is stored, along with the identifiers for
the first-child and following-sibling nodes. The metadata table associates the xmlIdentifier with the ID of the
document, the encoding format used for the original document (e.g. UTF-8), and the document’s prologue
and epilogue. The code table stores the path-to-codeword associations formed by the TREECHOP encoding
of the document. The last table, called the freenodes table, is not used to store any document-specific
information; instead it is used to keep a listing of unused node ID’s so that TREESTORE can efficiently
assign unique node identifiers for all nodes in the database.

For example, consider an XML document that contains a list of employees. The resulting
decomposition into relational tables using TREESTORE is shown in Fig. 4. Note that for the sake of
simplicity, the codewords in this example are artificial, only the code table and node table are shown, the data
is uncompressed and the docID is missing and can be assumed to be 1 for this example.

Example XML
<employees>
 <employee id=”1”>
 <fname>Bob</fname>
 <lname>Jay</lname>
 <job>Cook</job>
 </employee>
 <employee id=”2”>
 ...
 </employee>
 ...
</employees>

Code Table
PATH CODE

/employees a

/employees/employee b

/employees/employee/@id c

/employees/employee/fname d

/employees/employee/lname e

/employees/employee/job f

Node Table
ID CODE DATA FCHILD FSIB.
1 a - 2 -

2 b - 3 7

3 c “1” - 4

4 d “Bob” - 5

5 e “Jay” - 6

6 f “Cook” - -

7 a - 8 -

8 b “2” - 9

9 … … … …
Fig. 3. Example XML Document Decomposition

As illustrated in Fig. 3, a constituent node within an XML document can easily be accessed without
traversing the entire document as would be necessary if working with the raw XML. By using the unique
docID all nodes for a document can be retrieved from the server, preserving the proper parent-child
relationship between nodes and the document.

 4. EXPERIMENTAL RESULTS

This section presents the results of experiments that were carried out to evaluate the effectiveness of using
TREESTORE by comparing time efficiency for inserting and retrieving operations between the use of DB2
XML Extender [7] and TREESTORE interfaced with DB2 version 8.1.2. These experiments were performed

on Dell D600 laptops with 1400 MHz Pentium processors and 512 MB of RAM, running Windows XP. In all
cases, the database ran on the server-side, meaning that the client was freed from the responsibility of
managing the database. TREESTORE is implemented in Java, thus, SQL access to the DB2 server was
provided by JDBC, and the DB2 XML Extender approach relied on the XML Collection method. All
network communications with TREESTORE and DB2 Extenders were performed over a wireless 54MB
network to better simulate real-world scenarios.

For all tests the same set of documents were used. Each document was a collection of employee
records, with each record having an employee id number as an attribute, and nested elements to store first
name, last name, age, job title, and phone number. Table 2 describes characteristics of the test documents.

Table 2. Test Documents

 XML Documents
Document: 1 2 3 4 5 6 7
Employees: 50 100 150 250 500 1000 1500

Size (Bytes): 8722 17292 25920 43208 86370 171491 258659
Elements: 301 601 901 1501 3001 6001 9001

Attributes: 50 100 150 250 500 1000 1500

The set of documents illustrated in Table 2 was inserted and retrieved from each of the databases 50 times
and the average insertion and retrieval times were calculated. The results of these tests are shown in, Fig. 4 a.
and b., respectively.

a.

b.

Fig. 4. Insertion and Retrieval Test Data

Note that the DB2 XML Extender does not have to deal with the significant computation associated with
applying compression. In the “Local TS” entries above, all operations including running DB2, decomposing
the XML document, and inserting into the database occurred on the same computer. Thus, it is not surprising
that the networked version was more efficient, because the workload of decomposing and compressing the
document are handled on the client side, which is an incentive to distributing applications that rely on
TREESTORE.

During retrieval, the results were much more favorable. As shown in Fig. 4.b, a computer running a
local version of TREESTORE was able to be much better than DB2 at handling and storing small files.
TREESTORE’s performance is comparable with DB2, even on the larger documents (such as the 1500
employee document).

These results indicate that while TREESTORE is not necessarily better from an insertion stand-
point as compared with DB2, it is time efficient for retrieval as compared to the XML Extender approach,
which makes it beneficial for networked multi-client applications. Note that the additional time required for
networked TREESTORE may be the result of using a wireless infrastructure. Furthermore, a significant
advantage to using TREESTORE is that it distributes the load of document composition/decomposition and
storage, which will scale more effectively, and that it is cross-platform and does not rely on a proprietary
database interface.

5. CONCLUSIONS AND FUTURE WORK

 This paper described TREESTORE, a system for storing schema-less XML documents in arbitrary
relational databases. TREESTORE operates online and supports querying of compressed XML documents
without requiring full decompression. TREESTORE combines a space-efficient, database-portable access to
persistent storage with querying capability; therefore, it is a useful component of any Web application
requiring this functionality.
 Our experiments showed that, in addition to DB2 [8] TREESTORE is compatible with a multitude
of popular databases, including Oracle [23], Derby [9], MySQL [20] and PostgreSQL [24].

We have compared the time efficiency of TREESTORE using DB2 version 8.1, versus the use of
this version of DB2 with XML Extender. Experiments showed that TREESTORE’s performance, while
worse than DB2 on insertions, is comparable to DB2 (or faster) for retrievals. This makes it a good candidate
for use in Web applications or in a networked environment requiring storage of XML documents. There are
many additional advantages of using TREESTORE. First, it can be used for arbitrary relational databases as
compared to XML-enabled databases. TREESTORE does not mandate the user to specify a mapping, a
cumbersome process required by the DB2 XML Extender. Second, TREESTORE uses only four tables,
while XML-enabled databases may create an arbitrarily large number of tables. Third, TREESTORE
supports storing schema-oblivious XML documents. In conclusion, there is only a negligible cost of
providing a fully portable connection for storing XML documents in a relational database.

We note that in typical database-backed Web applications, there is a high ratio of retrievals to
insertions/updates. This makes TREESTORE an ideal candidate for use in Web applications or in a
networked environment requiring storage of XML documents.

There are two main areas for future work on TREESTORE: to find ways to improve performance,
and to remove existing restrictions. Currently with each data insert, a separate gzip compressor is used. This
has the downside that if data is small enough, the overhead from compression may negate (or worse) the
benefits of compression. To optimize this, the current idea is to use an “inlined” compressor per-document
permitting TREESTORE to benefit from less overhead and improve overall compression. Future versions of
TREESTORE could make use of a DTD or Schema to improve the efficiency of code-word generation. For
instance, if it is known that a node has one possible child, a very simple code is required for that child.
Finally, with the current implementation, simultaneous client interactions with a remote TREESTORE server
may result in various concurrency issues.

REFERENCES

[1] Aho, A. V., Hopcroft, J.E., and Ullman, J. D., “Data Structures and Algorithms”. Addison-Wesley, Mass, 1983.
[2] Amer-Yahia, S., and F. Du, J. Freire: A comprehensive solution to the XML-to-relational mapping problem. WIDM

2004: 31-38
[3] Arion, A., Bonifati, A., Costa, G. et al. “Efficient query evaluation over compressed XML data,” in 2004 Proc. Of

EDBT, pp. 200-218.
[4] Bohannon, P., Freire, J., Roy, P., and Simeon, J. 2002. From XML Schema to Relations: A Cost-based Approach to

XML Storage. In Proceedings of the 18th International Conference on Data Engineering. IEEE Computer Society,
San Jose, CA, USA, 64–75.

[5] Cheney, J. “Compressing XML with multiplexed hierarchical PPM models,” in 2001 Proc. IEEE Data Compression
Conference, pp. 163-172.

[6] Cleary J.G. and Witten I.H., “Data compression using adaptive coding and partial string matching,” IEEE Trans.
Comm., vol. 32, no. 4, pp. 396-402, Apr. 1984.

[7] DB2 UDB Extenders for iSeries, Retrieved March 2006,
http://www.common.be/pdffiles/16042002DB2XMLExtender.pdf.

[8] DB2 9 - pureXML™ and storage compression, Retrieved July 2006.
 http://www-306.ibm.com/software/data/db2/v9/
[9] Derby. Retrieved July 2006. http://db.apache.org/derby/
[10] Deutsch, A., Fernandez, M., and Suciu, D. 1999. Storing Semistructured Data with STORED. In Proceedings of the

1999 ACM SIGMOD International Conference on Management of Data. ACM, Philadelphia, Pennsylvania, USA,
431–442.

[11] eXist, Retrieved March 2006. http://exist.sourceforge.net/.
[12] Extensible Markup Language (XML) 1.0 (3rd ed.), Retrieved March 2006. http://www.w3.org/TR/REC-xml.
[13] Florescu, D. and Kossmann, D. 1999. Storing and Querying XML Data Using an RDBMS. IEEE Data Engineering

Bulletin 22, 3 (September), 27–34.
[14] The gzip home page, Retrieved March 2006. http://www.gzip.org.
[15] Introduction to Native XML Databases, Retrieved March 2006.

 http://www.xml.com/pub/a/2001/10/31/nativexmldb.html.
[16] Jagadish H. V et al. « TIMBER: A Native XML Database”. Retrieved July 2006.

http://www.eecs.umich.edu/db/timber/files/timber.pdf
[17] Leighton G., Müldner T., Diamond J. “TREECHOP: A Tree-based Query-able Compressor for XML,” Jodrey

School of Computer Science Technical Report 2005-005, http://cs.acadiau.ca/technicalReports/files/tr-2005-
005.pdf.

[18] Liefke H. and Suciu D., “XMill: an efficient compressor for XML data,” in 2000 Proc. ACM SIGMOD Int’l Conf.
on Management of Data, pp. 153-64.

[19] Min J-K., Park M-J. and Chung C-W., “XPRESS: a queriable compression for XML data,” in Proc. 2003 ACM
SIGMOD Int’l Conf. on Management of Data, pp. 122-33.

[20] MySQL. Retrieved July 2006. http://www.mysql.com/
[21] Müldner, T., Leighton, G. and J. Diamond 2005. Using XML Compression for WWW Communication, IADIS

International Conference WWW/Internet
[22] Natix C++ XML Base System. Retrieved July 2006. http://pi3.informatik.uni-mannheim.de/natix.html.en
[23] Oracle Database. Retrieved July 2006. http://www.oracle.com/index.html
[24] PostGreSQL, Retrieved March 2006. xpsql. http://gborg.postgresql.org/project/xpsql/projdisplay.php
[25] Schmidt, A., Kersten, M. L., Windhouwer, M., and Waas, F. 2000. “Efficient Relational Storage and Retrieval of

XML Documents. In Proceedings of the 3rd International Workshop on the Web and Databases. ACM, Dallas,
Texas, USA, 137–150.

[26] Shanmugasundaram, J. E. J. Shekita, J. Kiernan, R. Krishnamurthy, S.Viglas, J. F. Naughton, I. Tatarinov. “A
General Techniques for Querying XML Documents using a Relational Database System.” SIGMOD Record 30(3):
20-26 (2001)

[27] Shanmugasundaram, J., Tufte, K., Zhang, C., He, G., DeWitt, D. J., and Naughton, J. F. 1999. Relational Databases
for Querying XML Documents: Limitations and Opportunities. In Proceedings of the 25th International Conference
on Very Large Data Bases. Morgan Kauffman, Edinburgh, Scotland, UK, 302–314.

[28] Simple API for XML (SAX), Retrieved March 2006. http://www.saxproject.org.
[29] SOAP, Retrieved March 2006. http://www.w3.org/TR/soap/.
[30] Storing XML in Relational Databases, Retrieved March 2006.

http://www.xml.com/pub/a/2001/06/20/databases.html?page=2.
[31] Tian, F., and D. J. DeWitt, J. Chen, C. Zhang “The Design and Performance Evaluation of Alternative XML Storage

Strategies,” ACM SIGMOD Record Volume 31 , Issue 1 (March 2002)
[32] Tolani P.M. and Haritsa J.R., “XGRIND: a query-friendly XML compressor,” in Proc. 2002 Int’l Conf. on Database

Eng., pp. 225-34.
[33] Young, A. “Storing Large XML Documents in Relational Databases,” Honours thesis, Acadia University, 2006.
[34] XML Path Language (XPath), Retrieved March 2006. http://www.w3.org/TR/xpath.
[35] XML Schema Language, Retrieved July 2006. http://www.w3.org/XML/Schema
[36] XQuery 1.0: an XML query language, Retrieved March 2006. http://www.w3.org/TR/xquery.
[37] XQueC. Retrieved March 2006. http://www.icar.cnr.it/angela/xquec/XML and Databases, Retrieved March 2006.
[38] XUpdate. Retrieved March 2006. http://xmldb-org.sourceforge.net/xupdate/

